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1 Introduction

When 4He is cooled down to temperatures below Tλ ∼ 2.17 ◦ K it undergoes a phase

transition from a liquid phase, helium I, to a superfluid phase, helium II. While helium I

behaves like a normal low-viscous fluid, helium II exhibits both viscous and non-viscous

behavior. This property of helium II (and several other properties) can be explained by

a two-fluid model first suggested by Tisza [1] and expanded upon by Landau [2]. In this

model, helium II is described as a fluid with two components. One, the normal component,

has normal viscous behavior, while the other, the superfluid component, behaves like a

frictionless fluid.

Since the gauge-gravity duality [3–5] has been successful in describing the hydrody-

namic regime of gauge theories with holographic duals [6, 7], it is interesting to ask to

what extent it can describe the hydrodynamic behavior of superfluids. To create a “holo-

graphic superfluid,” or a gravity dual of a system with a condensed phase, one needs a

mechanism by which a condensate will be generated in an asymptotically AdS geometry.

In [8] it was argued that a charged scalar coupled to an abelian gauge field in AdS space

(an AdS version of the abelian Higgs model) may condense in the presence of a black hole

horizon. From the point of view of the boundary theory this corresponds to a second order

phase transition whose order parameter is dual to the condensed scalar [9]. Other types of

symmetry breaking mechanisms were considered in [10–13].

In [14, 15] some similarities between the phase diagram of the condensate dual to the

abelian Higgs model in the bulk, and that of a superfluid were discussed. Like a superfluid,

the phase diagram of the boundary theory was shown to include a tricritical point and a

critical superfluid velocity. A similar analysis was carried out in [13, 16] for a holographic

p-wave superfluid derived from a non-abelian gauge field in the bulk.
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In this work we investigate the phase velocity of particular sound modes in holographic

superfluids. In one component fluids, small perturbations of the pressure follow a wave

equation with a phase velocity equal to the speed of sound. In superfluids, there are two

propagating modes involving the pressure and the entropy density. As a consequence,

superfluids support two sound modes and, appropriately, two phase velocities called first

and second sound. In the limit where the density of the superfluid component goes to zero,

second sound vanishes and the remaining sound mode is first sound — the one associated

with pressure waves. Another limit can be obtained when an external force prevents

the normal component from flowing. In this case a propagating mode involving density

fluctuations will still remain. Since the normal component is stationary, these density

fluctuations necessarily involve non-vanishing superfluid velocity. The phase velocity of

such modes is called fourth sound [17].1 See also [18]. For 4He its value coincides with

second sound near the phase transition, and first sound at low temperatures [17].

Going back to a holographic setup, in [15] the authors found an approximate expression

for second sound, valid at high temperatures and the probe approximation (where the

geometry does not back-react on the matter fields). In the following section we show that

one may reinterpret the approximate expression obtained in [15] as an exact expression

for fourth sound, and then extend its range of validity to low temperatures, as long as the

probe approximation holds.

From the results of [15] one finds that, in the abelian Higgs model, at low temperatures,

fourth sound squared approaches 1/2 for dimension two condensates and 1/3 for dimension

one condensates in d = 3 space-time dimensions. In section 2 we explain why, in a conformal

theory, fourth sound should approach first sound at low temperatures

v2
4 −−−→
T→0

1

d− 1
(1.1)

where d is the spacetime dimension. Equation (1.1) explains the asymptotic value of fourth

sound found in [15] for dimension two operators but presents a puzzle for dimension one

operators. In sections 3 and 4 we use the Abelian Higgs model of [8, 9] to study holographic

superfluids with condensates of dimension 1/2 < ∆ ≤ 5. We find that for 1/2 < ∆ . 2

conformal symmetry is apparently broken at low temperatures; the breaking of conformal

symmetry introduces an extra scale which allows the asymptotic value of fourth sound to

deviate from its expected conformal value. As we show in section 4 this extra scale can

be tied to the divergence of the order parameter at low temperatures. Such a divergence,

for dimension one operators, was first discussed in [9]. In section 5 we adjust the matter

action so that the scalar potential is bounded from below, enforcing conformal behavior at

low temperatures. We summarize our findings in section 6.

2 Sound modes in the Tisza-Landau two-fluid model

Hydrodynamics can be thought of as an effective theory, valid as long as the relevant

fields vary slowly in space and time relative to some microscopic scale. In the absence

1 Third sound, also defined in [17], is the phase velocity of wave propagation on the surface of a thin

film of superfluid.
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of spontaneously broken symmetries, the hydrodynamic variables are the temperature,

T , chemical potential, µ, and fluid velocity, um with m = 0, . . . , d − 1. In the presence

of a spontaneously broken symmetry, the Goldstone boson ϕ provides an extra degree of

freedom. The hydrodynamic variables in such a system are T , µ, um and ξm = ∂mϕ. In [19]

it was shown that, at the inviscid level, one may consistently construct a conserved energy

momentum tensor and a conserved current out of these variables. Further, the resulting

formulation of fluid dynamics coincides with the relativistic version of the Tisza-Landau

two-fluid model of [20, 21]. See also appendix A of [15].

In the formulation of [19] the energy momentum tensor, Tmn, takes the form

Tmn = (ǫ+ P )umun + Pηmn + f2ξmξn (2.1)

where the energy density, ǫ, and the pressure, P , are related to the entropy, s, temperature,

T , density of the normal phase, ρn, and chemical potential, µ, through

ǫ+ P = Ts+ µρn . (2.2)

The density of the superfluid component is denoted ρs = f2µ and the superfluid velocity

is given by vm = ξm/µ. For the current one has

Jm = ρnu
m + f2ξm . (2.3)

In addition, the superfluid velocity satisfies a “Josephson equation”

umξm = −µ (2.4)

and we remember that it is generated by the gradient of the Goldstone boson ϕ,

ξm = ∂mϕ . (2.5)

In the absence of sources, the equations of motion are given by

∂mT
mn = 0 (2.6)

∂mJ
m = 0 . (2.7)

It is often useful to decompose (2.6) into a component orthogonal to the velocity field,

and a component parallel to it. For the component parallel to the velocity field, we find

from (2.5), (2.7) and

dP = sdT + ρndµ− f2ξmdξm (2.8)

that

0 = um∂nT
mn = ∂m(sum) . (2.9)

This implies that the superfluid component does not carry entropy.

To study sound modes of the superfluid, we look at linear perturbations of the hy-

drodynamic variables around a static configuration of the fluid. In what follows, we will

denote the unperturbed configuration with a subscript 0 and the perturbed configuration

with a δ. Thus, v0 = 1, vi = δvi, u0 = 1, ui = δui, ρs = ρs0 + δρs etc. The index i runs

– 3 –
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over the spatial coordinates i = 1, . . . , d−1. At the linear level, (2.4), (2.5), (2.6) and (2.7)

take the form

∂tδs + s0∂iδu
i = 0 (2.10a)

(ǫ0 + P0)∂tδu
i + µ0ρs0∂tδv

i = −∂iδP (2.10b)

∂t(δρs + δρn) + ρn0∂iδu
i + ρs0∂iδv

i = 0 (2.10c)

µ0∂tδv
i = ∂iδµ . (2.10d)

The first two equations correspond to the linearized version of (2.9) and the remaining

components of (2.6), the third equation corresponds to the linearized current conserva-

tion equation (2.7) and the last equation follows from (2.4) and (2.5) . It is possible to

recast (2.10) as wave equations for the total density ρ = ρs + ρn and the entropy per

particle σ = s/ρ,

∂2
t δσ =

ρs0

ρ0

σ0

w0

(

∂i∂
iδP − w0 − ρs0µ0

µ0

∂i∂
iδµ

)

(2.11)

∂2
t δρ =

ρ0

w0

(

ρn0

ρ0

∂i∂
iδP +

T0ρs0σ0

µ0

∂i∂
iδµ

)

(2.12)

where we have denoted w0 = ǫ0+P0. If we now express the chemical potential and pressure

in terms of the entropy per particle and density, we get a set of coupled wave equations.

Consider the case where the superfluid phase is absent, ρs0 = 0. Then, the entropy

does not oscillate and we get a density wave whose phase velocity squared is

v2
1 =

ρn0

w0

(

∂P

∂ρ

)

σ

. (2.13)

This is the expected speed of sound in normal fluids. Once ρs 6= 0 two coupled entropy-

density waves are allowed. The phase velocities of the corresponding modes are the two

roots of a second order polynomial. The bigger root reduces to (2.13) when ρs is set to

zero. The smaller root is the phase velocity of a new mode called second sound. To

measure second sound one can generate temperature waves in a tube filled with superfluid

helium, and check when the wavelength of the mode matches the system size and generates

a resonance. The first measurements of second sound in helium II are described in [22].

Now consider a setup where one allows only the superfluid component to flow. Such a

situation can be achieved by scattering the normal, viscous, phase off stationary scatterers.

In this case momentum is not conserved due to the force required to keep the scatterers

in place. In such a setup we would set δui = 0 and remove the momentum conservation

equation (2.10b) from (2.10). Instead of (2.11) and (2.12) we would have

∂2
t δs = 0 (2.14)

∂2
t δρ =

ρs0

µ0

∂i∂
iµ. (2.15)

Thus, we have one sound mode, similar to first sound since it excites a density wave, but

with vanishing normal-component velocity. The existence of such a sound mode was first

– 4 –
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realized in [17] and is called fourth sound. From (2.15) we find that the phase velocity of

fourth sound is given by

v2
4 =

ρs0

µ
(

∂ρ
∂µ

)

s

. (2.16)

Measurements of fourth sound can be carried out by allowing the superfluid to flow through

a very narrow tube packed with fine powder which prevents the normal component from

flowing. This is called a superleak, since it is only the super-component of the fluid that

leaks into the tube. Transducers are then placed at the ends of the tube to receive and

source the sound waves [23].

In [15], equation (2.16) was used as an approximation to second sound at high tem-

perature (or large entropy). At low temperatures most of the fluid will be in the superfluid

phase so we can approximate ρs ∼ ρ. Also, in a conformal fluid, where the only remain-

ing scale at T = 0 is µ, we expect that ρ ∝ µd−1. Thus, for conformal fluids at low

temperatures, fourth sound coincides with normal sound,

v2
4 −−−→
T→0

1

d− 1
. (1.1)

This behavior is similar to that of fourth sound in 4He, where, as mentioned earlier, it

interpolates between second sound close to the phase transition and first sound at low

temperatures [17, 23].

3 Setup

Our construction of a holographic superfluid is very similar to that of [13, 15]. The bulk

theory is the Abelian Higgs model studied in [8, 9, 24–27], whose action is given by

S =
1

2κ2

∫

(LEH − Lmatter)
√−gd4x (3.1)

with

LEH = R− Λ , Lmatter = |∂µΨ − iqAµΨ|2 + V (|Ψ|2) +
1

4
FµνF

µν (3.2)

where Fµν = ∂µAν − ∂νAµ and our units are such that Λ = −6. We will work in the probe

approximation where the charge of the scalar field is very large, and the matter content

of the theory decouples from gravity: Setting Ψ → Ψ/q, Aµ → Aµ/q, and scaling the

coefficients in V (|Ψ|2) such that V (|Ψ|2) → V (|Ψ|2)/q2, implies Lmatter → Lmatter/q
2. In

the q → ∞ limit Lmatter decouples from LEH. As noted in [11], for large but finite q this

approximation is valid only as long as Ψ and Φ are not too large. In principle, for any

T > 0, one may choose a large enough q so that the approximation will be good enough.

Another way to think of the probe approximation is to consider a formal expansion of the

full back-reacted geometry in inverse powers of q. The leading order matter solutions are

O(q−1), while the leading order metric is O(q0) and receives O(q−2) corrections.

Focusing first on LEH, the solution to Einstein gravity in 3 + 1 dimensions in the

presence of a negative cosmological constant is given by the AdS-Schwarzschild black hole,

gµνdx
µdxν =

1

z2

(

−f(z)dt2 + dx2
i +

dz2

f(z)

)

, (3.3)

– 5 –
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where

f(z) = 1 − z3

z3
0

(3.4)

and µ = 0, . . . , 3. The asymptotically AdS boundary is located at z = 0 and the horizon

is located at z = z0. The temperature of the black hole, T , is given by z0 = 3/4πT . Using

Ψ = 1√
2
ψ with ψ real, A0 = φ and Ai = ai (sometimes denoted ~a), the equations of motion

for the matter fields in the background (3.3) in the probe approximation are

z2∂z

(

f

z2
∂zψ

)

=

(

a2
i −

φ2

f
+
∂ψ⋆V (|ψ|2)

z2

)

ψ (3.5a)

∂2
zφ =

ψ2φ

z2f
(3.5b)

∂z (f∂zai) =
ψ2ai
z2

. (3.5c)

These configurations have been studied in [8, 9, 14, 15, 27] for

V (|Ψ|) = m2|Ψ|2 (3.6)

and m2 = −9/4, −2, and 0. Using the standard AdS/CFT mapping, [4, 5] the mass m2

of the scalar field, ψ, is related to the dimension ∆ of its dual operator 〈O∆〉, through

m2 = ∆(3 − ∆). Unitarity implies that ∆ ≥ 1/2.

The boundary conditions we apply to (3.5) are that ψ and ~a are finite at the horizon

and that φ vanishes there. This fixes three of the six integration constants in the solution

to (3.5). Near the asymptotically AdS boundary we require that φ(0) and ~a(0) are finite

and that the z3−∆ term in a near boundary series expansion of ψ vanishes.

According to the AdS/CFT dictionary [4, 5, 28], the coefficient of the z∆ term in a

near boundary series expansion of ψ is proportional to 〈O∆〉 while the coefficient of the

z3−∆ term is the source associated with 〈O∆〉. Our boundary conditions were chosen so

that the source vanishes. The chemical potential µ and the charge density ρ of the dual

theory can be read off a near boundary expansion of φ, φ = µ− ρz + . . .. Similarly, in the

gauge we are using, the velocity field ~ξ and the spatial part of the current ~J are given by

the expansion ~a = −~ξ + ~Jz + . . .. See [15] for details.

4 Solving the equations of motion

One solution to (3.5)–(3.6) with the boundary conditions discussed in the previous section is

φ = µ

(

1 − z

z0

)

, ψ = 0 , ~a = 0 . (4.1)

Since 〈O∆〉 = 0, this solution describes a non-condensed phase. From the analysis of [8] we

expect that at low enough temperatures other solutions to (3.5)–(3.6) will exist, where the

scalar field, ψ, is non vanishing. Such solutions usually differ by the number of nodes of ψ.

Since solutions with nodes are expected to be unstable we will focus on the solution where

ψ has no nodes. This will describe the condensed phase. At some critical temperature,

– 6 –
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Figure 1. The critical temperature Tc, where ψ develops a zero mode, as a function of the dimension

of the condensate ∆ for 1/2 < ∆ < 5.

Tc, the solution corresponding to the non-condensed phase and the solution corresponding

to the condensed phase overlap: There exists a non trivial ψ which solves (3.5a) with φ

and ~a as in (4.1), which is determined only up to a multiplicative integration constant — a

zero mode.2 Computing Tc numerically is straightforward. It involves searching for a zero

mode of the linear equation (3.5a) with φ = µ(1− z/z0) and ~a = 0. In figure 1 we plot the

dependence of the critical temperature on ∆ as obtained from such a numerical analysis.

A similar plot, which goes beyond the probe approximation we are considering here,

can be found in [29]. Thus, at least for T < Tc two solutions to (3.5) exist: a non-

condensed solution given by (4.1) and a solution with a non vanishing expectation value

for the condensate corresponding to the superfluid phase. If the transition is first order,

the superfluid phase may also exist at T > Tc.

Following [15], to see whether it is the superfluid phase or the non-condensed phase

which is preferred, we need to compute the free energy Ω given by Ω = −TStotal where T

is the temperature and Stotal is the total renormalized matter action. This renormalized

action is composed of two terms. The first is the on-shell matter action (3.1),

Son−shell =
V

κ2
lim
ǫ→0

(

(−φ∂zφ+ f~a · ∂z~a+ fψ∂zψ)
∣

∣

∣

z0

ǫ
+

∫ z0

ǫ

ψ2
(

−φ2f + |~a|2
)

z2
dz

)

(4.2)

where V is the volume of the transverse dimensions. The second contribution to Stotal

comes from holographically renormalizing the theory [30, 31], i.e., from adding boundary

counterterms, Scounter, to Son−shell which render (4.2) finite.

After inserting a near boundary expansion of ai, φ and ψ into (4.2), we find that

in the presence of non-vanishing sources for 〈O∆〉, the only divergent contributions to

Son−shell come from the z−2ψ∂zψ
∣

∣

ǫ
term on the right hand side of (4.2). Taking into

2 In the case of symmetry breaking in a non-abelian setup in AdS5, an analytic expression for the zero

mode was found in [13]. In [16] it was shown that information about the phase transition can be obtained

from this zero mode without the need to resort to numerics.

– 7 –
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Figure 2. (Color online) Fourth sound versus temperature for condensates of dimension 2/3 ≤
∆ ≤ 2 in the abelian Higgs model. The temperature is measured relative to the critical temperature

Tc. The curves are color coded according to the values of ∆.

account that the source terms for irrelevant operators should be treated as infinitesimal [5,

32], we find that only a mass counterterm is required to keep Son−shell finite (meaning,

a counterterm proportional to ψ2). Since this counterterm contribution vanishes for the

boundary conditions we are interested in, we are free to ignore it when computing Ω. For

all values of ∆ we consider in this work, we found that the superfluid phase is preferred

over the normal phase, and that the free energy is a smooth function of the temperature

indicating a second order phase transition.

We used a shooting algorithm to compute the solution to (3.5)–(3.6) corresponding to

the superfluid phase. Instead of shooting from the boundary we fixed ∂zφ(z0) and a(z0)

and searched for a value of ψ(z0) for which the near boundary z3−∆ coefficient in a series

expansion of ψ vanishes. We did this once for a(z0) = 0 and then once more with a

small enough value of a(z0) to obtain ρs = µ limξ→0 | ~J |/|~ξ| to a good approximation. This

procedure was carried out for ∆ between 13/25 and 5, with steps ranging from 1/10 for

∆ close to a half, to 1/2 at larger ∆. The resulting values of the speed of fourth sound,

computed from (2.16), for ∆ ≤ 2 are shown in figure 2. For ∆ > 2, the curve for fourth

sound closely follows that of ∆ = 2. From figure 2 we see that for ∆ . 2 and the range

of temperatures we are considering, the asymptotic values of v2
4

deviate from the expected

conformal behavior (1.1). The reason for this is the non conformal behavior of ρ at low

– 8 –
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Figure 3. Values of a∆ and n∆, obtained by fitting the total charge density ρ = a∆µ
2
(

µ
T

)n∆

to

the numerics. The fit was carried out for data points for which (ρ − ρs)/ρ < 10−3 where ρs is the

charge density of the superfluid phase. ∆ is the dimension of the condensate.

temperatures. Numerically, we find that for (ρ− ρs)/ρ < 10−3 one can approximate

ρ = a∆µ
2

(µ

T

)n∆

(4.3)

where a∆ and n∆ are plotted in figure 3. Since n∆ > 0 for ∆ . 2, the T → 0 equation of

state relating µ and ρ deviates from the expected conformal one.

In some instances, it is difficult to decide from figure 2 whether v2
4 will reach its

conformal value at T = 0 or not; we find that for 3/2 < ∆ < 2, the curve for v2
4 seems to

level off at a slower rate than that of other condensates. An extrapolation of the v2
4 curve

for ∆ = 3/2 down to T = 0 gives v2
4
→ 0.48. Also, a least squares fit of the low temperature

data to (4.3) gives a much better result than fitting, say, a power law correction to a ρ ∝ µ2

behavior. On the other hand, the v2
4 curves for condensates of dimension 3/2 < ∆ < 2

seem to posses an inflection point near 0.1Tc.

In figure 4 we have plotted the dependence of the ratio 〈O∆〉1/∆µ/ρ on T/Tc. Since

〈O∆〉1/∆µ/ρ approaches a constant as T → 0, this together with (4.3) implies that 〈O∆〉/µ∆

diverges at low temperatures whenever ∆ . 2. Thus, up to the numerical uncertainties

discussed in the previous paragraph, the non conformal behavior of 〈O∆〉 is tied to the

non-conformal behavior of ρ.

To better understand the low temperature limit of 〈O∆〉 and its relation to ρ, con-

sider (3.5) with a = 0. Instead of the z coordinate we will work with a rescaled radial

coordinate ζ = z/ℓ where ℓ is some length scale to be determined shortly. Defining also

the rescaled variables ζ0 = z0/ℓ, O = 〈O∆〉ℓ∆, R = ρℓ2 and M = µℓ and rescaling φ̃ = φ/ℓ,

ψ̃ = ψζ we can formally expand φ̃ and ψ̃ in large ζ0. To leading order, we find

∂2
ζ φ̃ = φ̃ψ̃2 (4.4)

∂2
ζ ψ̃ =

(

2 − (3 − ∆)∆

ζ2
− φ̃2

)

ψ̃. (4.5)

As long as φ̃2ψ̃ ≪ 1 we may approximate

ψ̃(ζ) = Oζ∆−1 (4.6)

– 9 –
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Figure 4. (Color online) The dimensionless ratio 〈O∆〉1/∆µ/ρ versus temperature. At low tem-

peratures this ratio approaches a constant, which implies via (4.3) that 〈O∆〉/µ∆ diverges at low

temperatures for small ∆. The curves are color coded according to the value of ∆.

in which case the solution to (4.4) takes the form

φ̃(ζ) =

(

O

2∆

)1/2∆ 2Mζ1/2

Γ
(

1

2∆

) K 1

2∆

(

Oζ∆

∆

)

(4.7)

where K is a modified Bessel function of the second kind. In [9] it was observed that for

∆ = 1, expression (4.6) for ψ̃ fits the low temperature numerical solution. The boundary

conditions for (4.7) are that φ̃(0) = M and that φ̃ does not increase exponentially in the

deep interior. To fully justify the latter choice of boundary conditions we would need to

match the large ζ expansion of the solution to (4.4) with a near horizon expansion of the

solution to (3.5b). Such an analysis was carried out in a somewhat different context in [33].

From (4.7) we can compute

〈O∆〉1/∆µ
ρ

= − (2∆)1/∆
Γ
(

1

2∆

)

Γ
(

− 1

2∆

) . (4.8)

As stated earlier, (4.6) is valid only as long as the φ̃2 term in (4.6) is negligible.

From (4.7) this implies that M2O ≪ 1. Thus, we need to choose a scale ℓ for which

both z0/ℓ ≫ 1 and µ2〈O∆〉ℓ−∆−2 ≪ 1, and which would be compatible with our low

temperature analysis, z0µ ≫ 1. If 〈O∆〉/µ∆ diverges at low temperatures (large z0µ), we

can use ℓ−∆ = 〈O∆〉. In figure 5 we plot our approximation (4.8) versus the numerical

value of 〈O∆〉1/∆µ/ρ for 1/2 < ∆ < 5.
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Figure 5. (Color online) The asymptotic value of 〈O∆〉1/∆µ/ρ at low temperatures, as a function

of ∆, the dimension of the scalar condensate. The blue curve shows the numerical result, displayed

in figure 4, and the dashed black curve shows the analytic approximation (4.8), valid for large

〈O∆〉/µ∆.

5 Bounding the scalar potential

It is tempting to think of (4.4) and (4.5) as the zero temperature description of the con-

densate. Recall however, that we’re working in the probe approximation where the matter

fields are small enough so that they don’t distort the metric. In practice, once ψ and φ

become too large the geometry will back-react on the matter fields. This will certainly have

a significant effect whenever ∆ . 2, as indicated by the divergent behavior of 〈O∆〉/µ∆, or

by the non conformal behavior of fourth sound at low temperatures. One way to ensure

a conformally invariant state at low temperatures, valid in the probe approximation, is to

consider a scalar potential, V , which has a minimum at a finite value of |Ψ|. This is exactly

the situation considered in [24], where the equations of motion of the full gravity-matter

action of (3.1) were studied for a scalar potential of the form

V (|ψ|) = m2|ψ|2 +
1

2
u2|ψ|4 (5.1)

with m2 = −2. In the presence of the potential (5.1) there exists an empty AdS solution to

the equations of motion whenever ψ is at an extremum of V , and φ and ai vanish. As shown

in [24], this allows for a condensed phase where ψ flows from ψ = 0 near the boundary to

ψ =
√

2/u in the infrared. Since the geometry is AdS4 both in the ultraviolet and in the

deep interior, one can imagine a limit where it is approximately AdS4 throughout, ensuring

the validity of the probe approximation near T = 0. In this case we expect that close to

T = 0, 〈O∆〉 ∝ µ∆ and v2
4 → 1/2. This is indeed the case, as we show below.

In the probe approximation, the equations of motion for the gauge field and scalar

field with a scalar potential as in (5.1) can be read off of (3.5). The boundary conditions
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Figure 6. (Color online) Fourth sound versus temperature for a dimension one condensate and a

potential as in (5.1). The curves are color coded according to the values of u. As u increases, lower

temperatures become numerically accessible.

we used and the numerical procedure for solving the equations of motion are similar to

those discussed in sections 3 and 4. We obtained numerical solutions for ∆ = 1 and ∆ = 2

and 10−3 ≤ u2 ≤ 1/3 in steps as small as 10−2. The resulting value of fourth sound for

dimension one operators is plotted in figure 6. We find that, as expected, once u is non

vanishing, fourth sound tends to reach its conformal value, v2
4 = 1/2 at low temperatures.

At intermediate temperatures, and for relatively small u, fourth sound seems to pass a

transition region where v2
4

is approximately 1/3 as was the case for u = 0. The fact that v2
4

tends to 1/2 at low temperatures indicates that conformal invariance is retained. Indeed,

for 2/15 < u2 < 1/3 we find that

ρ = au−nµ2 (5.2)

with a = 0.69 and n = 1.07 to a fairly good approximation. For dimension two operators

and the same range of u, we obtain (5.2) with a = 0.28 and n = 3 × 10−3.

Computing 〈O∆〉 for ∆ = 1, 2 we find that, unsurprisingly, once u 6= 0, 〈O∆〉1/∆µ/ρ
asymptotes to a finite value at small T . An analytic expression for the low temperatures

dependence of 〈O∆〉 on u, µ, ρ, ~ξ and ~J can be obtained as follows. Consider (3.5) with

a potential V as in (5.1). Defining ψ̂ = ψz, and setting z0µ ≫ 1, the low temperature

– 12 –
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equations of motion take the form

∂2
z ψ̂ = −φ2ψ̂ + |~a|2ψ̂ + u2ψ̂3 (5.3a)

∂2
zφ = φψ̂2 (5.3b)

∂2
z~a = ~aψ̂2 . (5.3c)

Since z does not appear explicitly in (5.3), we can construct the conserved quantity,

H =
1

2

(

(∂zψ̂)2 + |∂z~a|2 − (∂zφ)2
)

+
1

2

(

φ2 − |~a|2 − 1

2
u2ψ̂2

)

ψ̂2 . (5.4)

Deep in the infrared, at very large z, we expect the scalar field to be at the minimum of

the potential (5.1), ψ =
√

2/u, and the other fields to vanish, ~a = 0 and φ = 0. With this

information, evaluating (5.4) at large z we find

H = 0 . (5.5)

Using (5.5) and the near boundary expansion of ψ, φ and ~a in (5.4), we obtain

〈O2〉2 = ρ2 − | ~J |2 (5.6)

for dimension two operators, and

〈O1〉2 = u−2

(

(µ2 − |~ξ|2) ±
√

(

µ2 − |~ξ|2
)2

− 2u2

(

ρ2 − | ~J |2
)

)

(5.7)

for dimension one operators. If the superfluid velocity vanishes, ξ = J = 0, we find that in

the u→ 0 limit (5.6) reduces to
〈O2〉
ρ

= 1 (5.8)

while the ‘-’ branch of (5.7) reduces to

〈O1〉µ
ρ

= 1 (5.9)

which coincides with (4.8) for ∆ = 1. We’ve checked that (5.6), (5.7), (5.8) and (5.9) agree

with our numerical results and with those in the literature [15].

6 Summary

The results of our analysis can be summarized by figures 2, 3, 4 and 6: In figure 2 we see

that in d = 2 + 1 dimensions fourth sound deviates from its expected conformal behavior

at low temperatures for condensates of dimension ∆ . 2, due to an anomalous scaling of

the charge density (figure 3). Figure 4 together with figure 3 relate the anomalous scaling

of the charge density to the divergent behavior of 〈O∆〉/µ∆ at low temperatures. Finally,

in figure 6 we see how one can enforce conformal behavior at low temperatures by ensuring

an asymptotically AdS solution in the deep interior. The relation we’ve found between the
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charge density and the value of the condensate seems quite robust: one may summarize it

by saying that if 〈O∆〉/µ∆ is finite at low temperatures then fourth sound will asymptote

to its conformal value. This behavior is in agreement with the 3 + 1 dimensional p-wave

superfluid studied in [16].

Apart from the asymptotic behavior of 〈O∆〉, described at the end of sections 4 and 5,

our results were numerical. As such, we were unable to obtain a solution at arbitrarily low

temperatures. For u = 0 and condensates of dimension ∆ . 2 it is difficult to study the

low temperature solutions due to the divergent behavior of ρ and 〈O∆〉. For large values

of ∆, keeping track of (at least) the first 2∆− 3 terms in a near boundary series expansion

of ψ becomes challenging as z0µ becomes large. Unfortunately, this numerical issue makes

it hard to find an exact critical dimension, ∆c, below which the the scaling dimension of

the condensate becomes anomalous at low temperatures. To obtain a better estimate of

∆c, we need to go down to temperatures of at least half the current value obtained. With

our current algorithm, probing such low temperatures would require significantly more

precision than the 40 digits of precision we have worked with.

Experimental results for fourth sound in 4He [23] closely follow the theoretical curve

predicted in [17]. It is satisfying that for condensates with ∆ & 2 the dependence of fourth

sound of holographic superfluids on the temperature is very similar to that of helium II.

With such a qualitatively good fit to fourth sound, it would be interesting to compute

second sound by solving the equations of motion for the full back-reacted geometry.
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